To err is robotic, to tolerate immunological: fault detection in multirobot systems.
نویسندگان
چکیده
Fault detection and fault tolerance represent two of the most important and largely unsolved issues in the field of multirobot systems (MRS). Efficient, long-term operation requires an accurate, timely detection, and accommodation of abnormally behaving robots. Most existing approaches to fault-tolerance prescribe a characterization of normal robot behaviours, and train a model to recognize these behaviours. Behaviours unrecognized by the model are consequently labelled abnormal or faulty. MRS employing these models do not transition well to scenarios involving temporal variations in behaviour (e.g., online learning of new behaviours, or in response to environment perturbations). The vertebrate immune system is a complex distributed system capable of learning to tolerate the organism's tissues even when they change during puberty or metamorphosis, and to mount specific responses to invading pathogens, all without the need of a genetically hardwired characterization of normality. We present a generic abnormality detection approach based on a model of the adaptive immune system, and evaluate the approach in a swarm of robots. Our results reveal the robust detection of abnormal robots simulating common electro-mechanical and software faults, irrespective of temporal changes in swarm behaviour. Abnormality detection is shown to be scalable in terms of the number of robots in the swarm, and in terms of the size of the behaviour classification space.
منابع مشابه
Doppler and bearing tracking using fuzzy adaptive unscented Kalman filter
The topic of Doppler and Bearing Tracking (DBT) problem is to achieve a target trajectory using the Doppler and Bearing measurements. The difficulty of DBT problem comes from the nonlinearity terms exposed in the measurement equations. Several techniques were studied to deal with this topic, such as the unscented Kalman filter. Nevertheless, the performance of the filter depends directly on the...
متن کاملAn LPV Approach to Sensor Fault Diagnosis of Robotic Arm
One of the major challenges in robotic arms is to diagnosis sensor fault. To address this challenge, this paper presents an LPV approach. Initially, the dynamics of a two-link manipulator is modelled with a polytopic linear parameter varying structure and then by using a descriptor system approach and a robust design of a suitable unknown input observer by means of pole placement method along w...
متن کاملAbnormality Detection in Robots Exhibiting Composite Swarm Behaviours
Fault detection is one of the most prominent challenges in the field of multirobot systems (MRS). Most existing faulttolerant systems prescribe a characterisation of normal behaviours (fault-free behaviours), and train a model to recognise them. Behaviours not recognised by the model are labelled abnormal. MRS employing these models do not transition well to scenarios involving gradual changes ...
متن کاملAbnormality detection in multiagent systems inspired by the adaptive immune system
Fault tolerance is one of the most prominent challenges in the field of multirobot systems. The efficient and long term operation of a robot collective requires an accurate detection and accommodation of abnormally behaving robots. Most of the existing fault tolerant systems prescribe a characterization of normal behavior, and train a model to recognize them. Behaviors not recognized by the mod...
متن کاملAn Unknown Input Observer for Fault Detection Based on Sliding Mode Observer in Electrical Steering Assist Systems
Steering assist system controls the force transfer behavior of the steering system and improves the steering probability of the vehicle. Moreover, it is an interface between the diver and vehicle. Fault detection in electrical assisted steering systems is a challenging problem due to frequently use of these systems. This paper addresses the fault detection and reconstruction in automotive elect...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Bioinspiration & biomimetics
دوره 10 1 شماره
صفحات -
تاریخ انتشار 2015